Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 868: 161600, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36681341

RESUMO

The productive application of motile microorganisms for degrading hydrophobic contaminants in soil is one of the most promising processes in modern remediation due to its sustainability and low cost. However, the incomplete biodegradation of the contaminants and the formation of the intermediary metabolites in the process may increase the toxicity in soil during bioremediation, and motile inoculants may mobilize the pollutants through biosorption. Therefore, controlling these factors should be a fundamental part of soil remediation approaches. The aim of this study was to evaluate the sources of risk associated with the cometabolism-based transformation of 14C-labeled pyrene by inoculated Pseudomonas putida G7 and identify ways to minimize risk. Our model scenario examined the increase in bioaccessibility to a distant source of contamination facilitated by sunflower (Helianthus annuus L.) roots. A biochar trap for mobilized pollutant metabolites and bacteria has also been employed. The experimental design consisted of pots filled with a layer of sand with 14C-labeled pyrene (88 mg kg-1) as a contamination focus located several centimeters from the inoculation point. Half of the pots included a biochar layer at the bottom. The pots were incubated in a greenhouse with sunflower plants and P. putida G7 bacteria. Pots with sunflower plants showed a higher biodegradation of pyrene, its mobilization as metabolites through the percolate and the roots, and bacterial mobilization toward the source of contamination, also resulting in increased pyrene transformation. In addition, the biochar layer efficiently reduced the concentrations of pyrene metabolites collected in the leachates. Therefore, the combination of plants, motile bacteria and biochar safely reduced the risk caused by the biological transformation of pyrene.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Pirenos/metabolismo , Biodegradação Ambiental , Plantas/metabolismo , Biotransformação , Solo/química , Bactérias/metabolismo , Poluentes do Solo/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo
2.
Environ Sci Technol ; 56(19): 13975-13984, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103595

RESUMO

Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe-microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 µm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 µm × 35 µm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 µm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas putida , Fatores Quimiotáticos/metabolismo , Quimiotaxia , Dimetilpolisiloxanos/metabolismo , Hexaclorocicloexano/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Porosidade , Pseudomonas putida/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Sci Total Environ ; 850: 157952, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963409

RESUMO

Due to the extensive oil extraction and transportation that occurs in oil-producing countries, many lands remain contaminated because of accidental leakages. Despite its low cost and environmentally safe nature, bioremediation technology is not always successful, mainly because of the soil toxicity to the degrading microbial populations and plants. Here we report a three-year microfield experiment on the influence of natural sorbents of mineral (zeolite, kaolinite, vermiculite, diatomite), organic (peat), carbonaceous (biochar) origin, and a mixed sorbent ACD (composed of granular activated carbon and diatomite) on the bioremediation of grey forest soil contaminated with weathered crude oil (40.1 g total petroleum hydrocarbons (TPH) kg-1). Optimal doses of the sorbents significantly accelerated bioremediation of petroleum-contaminated soil through bioaugmentation followed by phytoremediation. The main reason for the influence of the sorbent amendments relied upon the creation of optimal conditions for the activation of hydrocarbon-utilizing bacteria and plant growth due to the reduction of soil toxicity, as well as maintaining an optimal pH and water-air regime in the soil. That happened because of reducing the soil hydrophobicity, increasing porosity and water holding capacity. The content of the TPH in the best samples (2% biochar or ACD) reduced to their local permissible concentration accepted for remediated soils in the Russian Federation (≤5 g kg-1) after two warm seasons compared to that after three warm seasons in the other samples. Although some sorbents decelerated biodegradation of highly condensed polycyclic aromatic hydrocarbons (PAHs, including benzo(a)pyrene) in the soil, the overall risk from the residual contaminants present in the remediated soil and plants was minimized. The final total content of the main PAHs in the sorbent-amended soils did not exceed the maximal permissible levels that are accepted in most EU countries (1000-40,000 µg kg-1), and they did not accumulate in the aboveground phytomass of grasses in dangerous concentrations.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Zeolitas , Benzo(a)pireno , Biodegradação Ambiental , Carvão Vegetal , Terra de Diatomáceas , Florestas , Hidrocarbonetos/metabolismo , Caulim , Petróleo/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Água
4.
Sci Total Environ ; 843: 157007, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35768030

RESUMO

As is the case with many other industrial activities, the organic contaminants at military-impacted sites may pose significant hazards to the environment and human health. Given the expected increase in defense investments globally, there is a need to make society aware of the risks of emissions of organic contaminants generated by military activities and to advance risk minimization approaches. The most recent advances in environmental analytical chemistry, persistence, bioavailability and risk assessment of organic contaminants indicate that efficient risk reductions through biological means are possible. This review debates the organic contaminants of interest associated with military activities, the methodology used to extract and analyze these contaminants, and the nature-based remediation technologies available to recover these sites. In addition, we revise the military environmental regulatory frameworks designed to sustain such actions. Military activities that potentially release organic contaminants on land could be classified as infrastructure and base operations, training exercises and armed conflicts; additionally, chemicals may include potentially toxic compounds, energetic compounds, chemical warfare agents and military chemical compounds. Fuel components, PFASs, TNT, RDX and dyphenylcyanoarsine are examples of organic contaminants of environmental concern. Particularly in the case of potentially toxic and energetic compounds, bioremediation and phytoremediation are considered eco-friendly and low-cost technologies that can be used to remediate these contaminated sites. In addition, this article identifies implementing the bioavailability of organic contaminants as a justifiable approach to facilitate the application of these nature-based approaches and to reduce remediation costs. More realistic risk assessment in combination with new and economically feasible remediation methods that reduce risk by reducing bioavailability (instead of lowering the total contaminant concentration) will serve as an incentive for the military and regulators to accept nature-based approaches.


Assuntos
Militares , Poluentes do Solo , Biodegradação Ambiental , Disponibilidade Biológica , Humanos , Poluentes do Solo/análise
5.
Sci Total Environ ; 832: 154938, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390372

RESUMO

A major cause of high bioremediation endpoints is the limited bioaccessibility to residual contaminants resting in soil pores with diameters close to the size exclusion limit of bacterial cells. Under nongrowing conditions and in the absence of hydraulic flow, we examined how the tactic behavior of motile, contaminant-degrading Pseudomonas putida G7 cells (2 × 1 µm) influenced passage through membranes with pores ranging in size from 1 µm to 12 µm. The bacteria were spontaneously retained by the membranes - even those with the largest pore size. However, the cells were mobilized through 5 µm and 12 µm pores after the application of an attractant (salicylate). Mobilization also occurred by attraction to the common root exudate constituents γ-aminobutyric acid and citrate and repellence (or negative taxis) to zero-valent iron nanoparticles. The observed pore size threshold for tactic mobilization (5 µm) and unaltered cell fluxes and effective cell diffusion against different chemoeffector strengths and concentrations suggest that there is a physical constraint on the gradient sensing mechanism at the pores that drives the tactic response. Our results indicate that chemically mediated, small-scale tactic reactions of motile bacteria may become relevant to enhance the bioaccessibility of the residual contaminants present in micrometer-sized soil pores.


Assuntos
Pseudomonas putida , Poluentes do Solo , Biodegradação Ambiental , Pseudomonas putida/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
6.
Integr Environ Assess Manag ; 18(6): 1454-1487, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34989108

RESUMO

The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Organização para a Cooperação e Desenvolvimento Econômico , Medição de Risco/métodos , Biodegradação Ambiental
7.
Sci Total Environ ; 803: 150025, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500273

RESUMO

There is a strong need for certified reference materials in the quality assurance of nonionic soil contaminant bioavailability estimations through physicochemical methods. We applied desorption extraction, a method recently standardized as ISO16751, to determine the bioavailable concentration of the most commonly regulated polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene (BaP), in the reference industrial soil BCR-524 with a certified BaP total concentration of 8.60 mg kg-1. This concentration represented BaP levels found in many PAH-polluted soils. The method, based on single-point extraction of the analyte desorbed into the aqueous phase by a receiving phase (Tenax or cyclodextrin), was applied ten times. The data fulfilled highly demanding quality criteria based on recovery and repeatability. The bioavailable BaP concentration detected through Tenax extraction, 1.82 mg kg-1, was comparable to bioavailable concentrations determined in field-contaminated soils and to environmental quality standards based on previously observed total BaP concentrations. There was good agreement (Student's t-test, P ≤ 0.05) with the bioavailable BaP concentration determined by cyclodextrin extraction (1.53 mg kg-1). The methods were extended to four other certified 4- and 5-ringed PAHs for comparative purposes. We suggest ways of improving of the ISO16751 standard related to further systematic assessment of the Tenax-to-soil ratio and incorporation of mass balances. Furthermore, BCR-524 is suitable for quality-assurance protocols with these methods when used in site-specific risk assessments of PAH-polluted environments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Benzo(a)pireno/análise , Biodegradação Ambiental , Disponibilidade Biológica , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
9.
Sci Total Environ ; 760: 143408, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243519

RESUMO

Partial transformation of pollutants and mobilization of the produced metabolites may contribute significantly to the risks resulting from biological treatment of soils polluted by hydrophobic chemicals such as polycyclic aromatic hydrocarbons (PAHs). Pyrene, a four-ringed PAH, was selected here as a model pollutant to study the effects of sunflower plants on the bacterial accessibility and cometabolism of this pollutant when located at a spatially distant source within soil. We compared the transformation of passively dosed 14C-labeled pyrene in soil slurries and planted pots that were inoculated with the bacterium Pseudomonas putida G7. This bacterium combines flagellar cell motility with the ability to cometabolically transform pyrene. Cometabolism of this PAH occurred immediately in the inoculated and shaken soil slurries, where the bacteria had full access to the passive dosing devices (silicone O-rings). Root exudates did not enhance the survival of P. putida G7 cells in soil slurries, but doubled their transport in column tests. In greenhouse-incubated soil pots with the same pyrene sources instead located centimeters from the soil surface, the inoculated bacteria transformed 14C-labeled pyrene only when the pots were planted with sunflowers. Bacterial inoculation caused mobilization of 14C-labeled pyrene metabolites into the leachates of the planted pots at concentrations of approximately 1 mg L-1, ten times greater than the water solubility of the parent compound. This mobilization resulted in a doubled specific root uptake rate of 14C-labeled pyrene equivalents and a significantly decreased root-to-fruit transfer rate. Our results show that the plants facilitated bacterial access to the distant pollutant source, possibly by increasing bacterial dispersal in the soil; this increased bacterial access was associated with cometabolism, which contributed to the risks of biodegradation.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirenos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
10.
Sci Total Environ ; 720: 137608, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32143055

RESUMO

We studied how sunflower plants affect rhamnolipid biosurfactant mobilization of slowly desorbing fractions of polycyclic aromatic hydrocarbons (PAHs) in soil from a creosote-contaminated site. Desorption kinetics of 13 individual PAHs revealed that the soil contained initially up to 50% slowly desorbing fractions. A rhamnolipid biosurfactant was applied to the soil at the completion of the sunflower cycle (75 days in greenhouse conditions). After this period, the PAHs that remained in the soil were mainly present in a slowly desorbing form as a result of the efficient biodegradation of fast-desorbing PAHs by native microbial populations. The rhamnolipid enhanced the bioavailable fraction of the remaining PAHs by up to 30%, as evidenced by a standardized desorption extraction with Tenax, but the enhancement occurred with only planted soils. The enhanced bioavailability did not decrease residual PAH concentrations under greenhouse conditions, possibly due to ecophysiological limitations in the biodegradation process that were independent of the bioavailability. However, biodegradation was enhanced during slurry treatment of greenhouse planted soils that received the biosurfactant. The addition of rhamnolipids caused a dramatic shift in the soil bacterial community structure, which was magnified in the presence of sunflower plants. The stimulated groups were identified as fast-growing and catabolically versatile bacteria. This new rhizosphere microbial biomass possibly interacted with the biosurfactant to facilitate intra-aggregate diffusion of PAHs, thus enhancing the kinetics of slow desorption. Our results show that the usually limited biosurfactant efficiency with contaminated field soils can be significantly enhanced by integrating the sunflower ontogenetic cycle into the bioremediation design.


Assuntos
Rizosfera , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Solo , Microbiologia do Solo , Poluentes do Solo
11.
Sci Total Environ ; 717: 137210, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062235

RESUMO

The risks of pollution by polycyclic aromatic hydrocarbons (PAHs) may increase in bioremediated soils as a result of the formation of toxic byproducts and the mobilization of pollutants associated to suspended colloids. In this study, we used the motile and chemotactic bacterium Pseudomonas putida G7 as an experimental model for examining the potential role of bacterial motility in the cometabolism and biosorption of pyrene in a porous medium. For this purpose, we conducted batch and column transport experiments with 14C-labelled pyrene loaded on silicone O-rings, which acted as a passive dosing system. In the batch experiments, we observed concentrations of the 14C-pyrene equivalents well above the equilibrium concentration observed in abiotic controls. This mobilization was attributed to biosorption and cometabolism processes occurring in parallel. HPLC quantification revealed pyrene concentrations well below the 14C-based quantifications by liquid scintillation, indicating pyrene transformation into water-soluble polar metabolites. The results from transport experiments in sand columns revealed that cometabolic-active, motile cells were capable of accessing a distant source of sorbed pyrene. Using the same experimental system, we also determined that salicylate-mobilized cells, inhibited for pyrene cometabolism, but mobilized due to their tactic behavior, were able to sorb the compound and mobilize it by biosorption. Our results indicate that motile bacteria active in bioremediation may contribute, through cometabolism and biosorption, to the risk associated to pollutant mobilization in soils. This research could be the starting point for the development of more efficient, low-risk bioremediation strategies of poorly bioavailable contaminants in soils.


Assuntos
Bactérias , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Porosidade , Pirenos , Poluentes do Solo
12.
Sci Total Environ ; 706: 135739, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818568

RESUMO

Due to the extended oil extraction and transportation in Russia and other oil-producing countries, many lands remain contaminated because of accidental spills. This situation requires the cost-effective and efficient remediation of petroleum-contaminated soils. Bioremediation of soils contaminated with high concentrations of crude oil is usually hampered by high toxicity thresholds for microbial degraders. We have performed a two-year microfield experiment on the influence of a mixed adsorbent (ACD) composed of granular activated carbon and diatomite on bioremediation of a grey forest soil contaminated with crude oil at concentrations (5-15 % w/w) that would theoretically not result in a successful pollutant removal due to toxicity. Remediation of these soils was evaluated after treating with the ACD adsorbent (from 4 to 12% w/w) and a biopreparation (BP) containing hydrocarbon-degrading bacteria, separately or in combination. Reduction of total petroleum hydrocarbons content was significantly greater in highly contaminated soils with the combined amendments than in the respective controls (through the activation of indigenous degrading microorganisms by fertilizing and mixing) by 9-10% and 5-8% at the end of the first and second years, respectively, depending on the contamination level. Significantly higher counts of petroleum-degrading microorganisms (as indigenous and introduced by the BP), as well as much less phytotoxicity was detected in the ACD-amended soils, as compared with the samples without adsorbent. In addition, the ACD mixture drastically reduced the wash-out of polar petroleum metabolites (evidently oxidized hydrocarbons) and the phytotoxicity of the lysimetric waters, especially in highly contaminated soils. The results indicate that the mixture of activated carbon and diatomite is a prospective adsorbent for the in situ bioremediation of soils highly contaminated with crude oil.


Assuntos
Biodegradação Ambiental , Petróleo , Hidrocarbonetos , Estudos Prospectivos , Federação Russa , Solo , Microbiologia do Solo , Poluentes do Solo
13.
Sci Total Environ ; 668: 790-796, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30870747

RESUMO

The application of a rhamnolipid biosurfactant for enhanced solubilization and biodegradation of slowly desorbing polycyclic aromatic hydrocarbons (PAHs) in contaminated soils was determined in this study. The soil samples exhibited different levels of pollution and different bioremediation stages: the first soil originated from a creosote-polluted site, contained 4370 mg kg -1 of PAHs and had not been bioremediated; the second soil was the same as the first but had received bioremediation treatment with nutrient amendment in biopiles for a period of 5 months and contained 580 mg kg -1 of PAHs after this treatment; the third soil was treated by bioremediation for several years to reduce the concentration of PAHs to 275 mg kg -1. The kinetics of PAH desorption were determined to assess the magnitude of the slowly desorbing fractions present in the polluted soil and to optimize the biosurfactant effectiveness in terms of biodegradation. The soils that had been treated by bioremediation were enriched in slowly desorbing PAHs. The rhamnolipid at a concentration above its critical micelle concentration enhanced biodegradation in the soils that had been bioremediated previously. The measurement of residual concentrations of native PAHs showed the promoting effect of the biosurfactant on the biodegradation of the slowly desorbing fractions. Interestingly, benzo(a)pyrene was biodegraded in the soil that had been bioremediated for a long time. Rhamnolipid can constitute a valid alternative to chemical surfactants in promoting the biodegradation of slow-desorption PAHs, which is one of the most important problems in bioremediation, but the efficiency depends strongly on the bioremediation stage in which the biosurfactant is applied.


Assuntos
Biodegradação Ambiental , Glicolipídeos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo , Tensoativos
14.
Environ Sci Technol ; 52(18): 10673-10679, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30113820

RESUMO

Chemoeffector-mediated bacterial motility and tactic swimming are major drivers for contaminant accessibility and biodegradation at submillimeter scales. In sand-filled percolated columns we tested how and to what degree chemoeffectors influenced bacterial transport and thereby promoted accessibility and degradation of distantly located 14C-naphthalene (NAH) at the centimeter scale. Sunflower root exudates and silver nanoparticles (AgNPs) were used as chemoeffectors to stimulate opposing effects of motility and tactic swimming of NAH-degrading Pseudomonas putida G7. Sunflower exudates prompted smooth bacterial movement and positive taxis, while AgNPs induced tortuous movement and repellent responses. Compared to chemoeffector-free controls exudates reduced deposition and stimulated bacterial transport during percolation experiments. AgNPs, however, provoked bacterial deposition and concomitant saturation of the collector surfaces (filter blocking) that led to progressively increased percolation of cells. Despite mechanistic differences, both motility patterns supported bacterial transport and promoted mineralization rates of NAH desorbing from a source placed at the column outlet. Observed mineralization rates in the presence of the chemoeffectors were 5-fold higher than those in their absence and similar to NAH-mineralization in well-stirred batch assays. Our results indicate that chemically mediated, small-scale bacterial motility patterns may become relevant for long-distance bacterial transport and the biodegradation of patchy contaminants at higher scales, respectively.


Assuntos
Nanopartículas Metálicas , Pseudomonas putida , Biodegradação Ambiental , Dióxido de Silício , Prata
15.
Environ Sci Technol ; 51(20): 11935-11942, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28921965

RESUMO

This work examines the role of mycelia in enhancing the degradation by attached bacteria of organic pollutants that have poor bioavailability. Two oomycetes, Pythium oligandrum and Pythium aphanidermatum, were selected as producers of mycelial networks, while Mycobacterium gilvum VM552 served as a model polycyclic aromatic hydrocarbon (PAH) degrading bacterium. The experiments consisted of bacterial cultures exposed to a nondisturbed nonaqueous phase liquid (NAPL) layer containing a heavy fuel spiked with 14C-labeled phenanthrene that were incubated in the presence or absence of the mycelia of the oomycetes in both shaking and static conditions. At the end of the incubation, the changes in the total alkane and PAH contents in the NAPL residue were quantified. The results revealed that with shaking and the absence of mycelia, the strain VM552 grew by utilizing the bulk of alkanes and PAHs in the fuel; however, biofilm formation was incipient and phenanthrene was mineralized following zero-order kinetics, due to bioavailability limitations. The addition of mycelia favored biofilm formation and dramatically enhanced the mineralization of phenanthrene, up to 30 times greater than the rate without mycelia, possibly by providing a physical support to bacterial colonization and by supplying nutrients at the NAPL/water interface. The results in the static condition were very different because the bacterial strain alone degraded phenanthrene with sigmoidal kinetics but could not degrade alkanes or the bulk of PAHs. We suggest that bacteria/oomycete interactions should be considered not only in the design of new inoculants in bioremediation but also in biodegradation assessments of chemicals present in natural environments.


Assuntos
Biodegradação Ambiental , Micélio , Hidrocarbonetos Policíclicos Aromáticos , Bactérias , Disponibilidade Biológica , Poluentes do Solo
16.
Environ Sci Technol ; 50(14): 7633-40, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27286642

RESUMO

The controlled mobilization of pollutant-degrading bacteria has been identified as a promising strategy for improving bioremediation performance. We tested the hypothesis whether the mobilization of bacterial degraders may be achieved by the action of eukaryotic zoospores. We evaluated zoospores that are produced by the soil oomycete Pythium aphanidermatum as a biological vector, and, respectively, the polycyclic aromatic hydrocarbon (PAH)-degrading bacteria Mycobacterium gilvum VM552 and Pseudomonas putida G7, acting as representative nonflagellated and flagellated species. The mobilization assay was performed with a chemical-in-capillary method, in which zoospores mobilized bacterial cells only when they were exposed to a zoospore homing inducer (5% (v/v) ethanol), which caused the tactic response and settlement of zoospores. The mobilization was strongly linked to a lack of bacterial motility, because the nonflagellated cells from strain M. gilvum VM552 and slightly motile, stationary-phase cells from P. putida G7 were mobilized effectively, but the actively motile, exponentially grown cells of P. putida G7 were not mobilized. The computer-assisted analysis of cell motility in mixed suspensions showed that the swimming rate was enhanced by zoospores in stationary, but not in exponentially grown, cells of P. putida G7. It is hypothesized that the directional swimming of zoospores caused bacterial mobilization through the thrust force of their flagellar propulsion. Our results suggest that, by mobilizing pollutant-degrading bacteria, zoospores can act as ecological amplifiers for fungal and oomycete mycelial networks in soils, extending their potential in bioremediation scenarios.


Assuntos
Biodegradação Ambiental , Eucariotos/metabolismo , Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo
17.
Sci Rep ; 6: 23841, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27053439

RESUMO

Many bacterial species use flagella for self-propulsion in aqueous media. In the soil, which is a complex and structured environment, water is found in microscopic channels where viscosity and water potential depend on the composition of the soil solution and the degree of soil water saturation. Therefore, the motility of soil bacteria might have special requirements. An important soil bacterial genus is Bradyrhizobium, with species that possess one flagellar system and others with two different flagellar systems. Among the latter is B. diazoefficiens, which may express its subpolar and lateral flagella simultaneously in liquid medium, although its swimming behaviour was not described yet. These two flagellar systems were observed here as functionally integrated in a swimming performance that emerged as an epistatic interaction between those appendages. In addition, each flagellum seemed engaged in a particular task that might be required for swimming oriented toward chemoattractants near the soil inner surfaces at viscosities that may occur after the loss of soil gravitational water. Because the possession of two flagellar systems is not general in Bradyrhizobium or in related genera that coexist in the same environment, there may be an adaptive tradeoff between energetic costs and ecological benefits among these different species.


Assuntos
Bradyrhizobium/fisiologia , Flagelos/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Quimiotaxia , Regulação Bacteriana da Expressão Gênica , Mutação , Filogenia , Microbiologia do Solo
18.
Environ Pollut ; 213: 438-445, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26967351

RESUMO

The microbial assessment of pollutant toxicity rarely includes behavioral responses. In this study, we investigated the tactic response of Pseudomonas putida G7, a representative of soil bacterium, towards engineered zero-valent iron nanoparticles (nZVIs), as a new end-point assessment of toxicity. The study integrated the characterization of size distribution and charge of nZVIs and tactic reaction response by means of inverted capillary assay and computer-assisted motion analysis of motility behavior. Iron nanoparticles (diameter ≤ 100 nm) were prepared in the absence of oxygen to prevent aggregation, and then exposed in aerobic conditions. We first demonstrate that iron nanoparticles can elicit a negative tactic response in bacteria at low but environmentally-relevant, sub-lethal concentrations (1-10 µg/L). Cells were repelled by nZVIs in the concentration gradients created inside the capillaries, and a significant increase in turning events, characteristic of negative taxis, was detected under exposure to nZVIs. These tactic responses were not detectable after sustained exposure of the nanoparticles to oxygen. This new behavioral assessment may be prospected for the design of sensitive bioassays for nanomaterial toxicity.


Assuntos
Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/fisiologia , Solo/química , Microbiologia do Solo
19.
Environ Pollut ; 205: 378-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196229

RESUMO

We investigated the effects of different bioavailability scenarios on the rhamnolipid-enhanced biodegradation of pyrene by the representative polycyclic aromatic hydrocarbon degrader Mycobacterium gilvum VM552. This biosurfactant enhanced biodegradation when pyrene was provided in the form of solid crystals; no effect was observed when the same amount of the chemical was preloaded on polydimethylsiloxane (PDMS). An enhanced effect was observed when pyrene was sorbed into soil but not with the dissolved compound. Synchronous fluorescence spectrophotometry and liquid scintillation were used to determine the phase exchange of pyrene. We also investigated the phase distribution of bacteria. Our results suggest that the rhamnolipid can enhance the biodegradation of pyrene by micellar solubilization and increase diffusive uptake. These mechanisms increase substrate acquisition by bacterial cells at exposure concentrations well above the half-saturation constant for active uptake. The moderate solubilization of pyrene from PDMS by the rhamnolipid and the prevention of cell attachment may explain the lack of enhancement for pyrene-preloaded PDMS.


Assuntos
Glicolipídeos/química , Micobactérias não Tuberculosas/metabolismo , Pirenos/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica
20.
Environ Sci Technol ; 49(7): 4498-505, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25734420

RESUMO

Bacterial dispersal is a key driver of the ecology of microbial contaminant degradation in soils. This work investigated the role of dissolved organic matter (DOM) in the motility, attachment, and transport of the soil bacterium Pseudomonas putida G7 in saturated porous media. The study is based on the hypothesis that DOM quality is critical to triggering tactic motility and, consequently, affects bacterial transport and dispersal. Sunflower root exudates, humic acids (HA), and the synthetic oleophilic fertilizer S-200 were used as representatives of fresh, weathered, and artificially processed DOM with high nitrogen and phosphorus contents, respectively. We studied DOM levels of 16-130 mg L(-1), which are representative of DOM concentrations typically found in agricultural soil pore water. In contrast to its responses to HA and S-200, strain G7 exhibited a tactic behavior toward root exudates, as quantified by chemotaxis assays and single-cell motility observations. All DOM types promoted bacterial transport through sand at high concentrations (∼ 130 mg L(-1)). At low DOM concentrations (∼ 16 mg L(-1)), the enhancement occurred only in the presence of sunflower root exudates, and this enhancement did not occur with G7 bacteria devoid of flagella. Our results suggest that tactic DOM effectors strongly influence bacterial transport and the interception probability of motile bacteria by collector surfaces.


Assuntos
Pseudomonas putida/fisiologia , Microbiologia do Solo , Adsorção , Quimiotaxia , Fertilizantes , Helianthus/microbiologia , Substâncias Húmicas , Nitrogênio , Fósforo , Raízes de Plantas/microbiologia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...